Module saev.app.modeling
Functions
def get_model_lookup() ‑> dict[str, Config]
Classes
class Config (key: str,
vit_family: str,
vit_ckpt: str,
sae_ckpt: str,
tensor_dpath: pathlib.Path,
dataset_name: str,
acts_cfg: DataLoad)-
Configuration for a Vision Transformer (ViT) and Sparse Autoencoder (SAE) model pair.
Stores paths and configuration needed to load and run a specific ViT+SAE combination.
Expand source code
@beartype.beartype @dataclasses.dataclass(frozen=True) class Config: """Configuration for a Vision Transformer (ViT) and Sparse Autoencoder (SAE) model pair. Stores paths and configuration needed to load and run a specific ViT+SAE combination. """ key: str """The lookup key.""" vit_family: str """The family of ViT model, e.g. 'clip' for CLIP models.""" vit_ckpt: str """Checkpoint identifier for the ViT model, either as HuggingFace path or model/checkpoint pair.""" sae_ckpt: str """Identifier for the SAE checkpoint to load.""" tensor_dpath: pathlib.Path """Directory containing precomputed tensors for this model combination.""" dataset_name: str """Which dataset to use.""" acts_cfg: config.DataLoad """Which activations to load for normalizing.""" @property def wrapped_cfg(self) -> config.Activations: n_patches = 196 if self.vit_family == "dinov2": n_patches = 256 return config.Activations( vit_family=self.vit_family, vit_ckpt=self.vit_ckpt, vit_layers=[-2], n_patches_per_img=n_patches, )
Class variables
var acts_cfg : DataLoad
-
Which activations to load for normalizing.
var dataset_name : str
-
Which dataset to use.
var key : str
-
The lookup key.
var sae_ckpt : str
-
Identifier for the SAE checkpoint to load.
var tensor_dpath : pathlib.Path
-
Directory containing precomputed tensors for this model combination.
var vit_ckpt : str
-
Checkpoint identifier for the ViT model, either as HuggingFace path or model/checkpoint pair.
var vit_family : str
-
The family of ViT model, e.g. 'clip' for CLIP models.
Instance variables
prop wrapped_cfg : Activations
-
Expand source code
@property def wrapped_cfg(self) -> config.Activations: n_patches = 196 if self.vit_family == "dinov2": n_patches = 256 return config.Activations( vit_family=self.vit_family, vit_ckpt=self.vit_ckpt, vit_layers=[-2], n_patches_per_img=n_patches, )